Logo Search packages:      
Sourcecode: feel++ version File versions  Download package

Transform.h

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_TRANSFORM_H
#define EIGEN_TRANSFORM_H

template<typename Transform>
00031 struct ei_transform_traits
{
  enum
  {
    Dim = Transform::Dim,
    HDim = Transform::HDim,
    Mode = Transform::Mode,
    IsProjective = (Mode==Projective)
  };
};

template< typename TransformType,
          typename MatrixType,
          bool IsProjective = ei_transform_traits<TransformType>::IsProjective>
struct ei_transform_right_product_impl;

template< typename Other,
          int Mode,
          int Dim,
          int HDim,
          int OtherRows=Other::RowsAtCompileTime,
          int OtherCols=Other::ColsAtCompileTime>
struct ei_transform_left_product_impl;

template< typename Lhs,
          typename Rhs,
          bool AnyProjective = 
            ei_transform_traits<Lhs>::IsProjective || 
            ei_transform_traits<Lhs>::IsProjective>
struct ei_transform_transform_product_impl;

template< typename Other,
          int Mode,
          int Dim,
          int HDim,
          int OtherRows=Other::RowsAtCompileTime,
          int OtherCols=Other::ColsAtCompileTime>
struct ei_transform_construct_from_matrix;

template<typename TransformType> struct ei_transform_take_affine_part;

/** \geometry_module \ingroup Geometry_Module
  *
  * \class Transform
  *
  * \brief Represents an homogeneous transformation in a N dimensional space
  *
  * \param _Scalar the scalar type, i.e., the type of the coefficients
  * \param _Dim the dimension of the space
  * \param _Mode the type of the transformation. Can be:
  *              - Affine: the transformation is stored as a (Dim+1)^2 matrix,
  *                        where the last row is assumed to be [0 ... 0 1].
  *                        This is the default.
  *              - AffineCompact: the transformation is stored as a (Dim)x(Dim+1) matrix.
  *              - Projective: the transformation is stored as a (Dim+1)^2 matrix
  *                            without any assumption.
  *
  * The homography is internally represented and stored by a matrix which
  * is available through the matrix() method. To understand the behavior of
  * this class you have to think a Transform object as its internal
  * matrix representation. The chosen convention is right multiply:
  *
  * \code v' = T * v \endcode
  *
  * Therefore, an affine transformation matrix M is shaped like this:
  *
  * \f$ \left( \begin{array}{cc}
  * linear & translation\\
  * 0 ... 0 & 1
  * \end{array} \right) \f$
  *
  * Note that for a projective transformation the last row can be anything,
  * and then the interpretation of different parts might be sightly different.
  *
  * However, unlike a plain matrix, the Transform class provides many features
  * simplifying both its assembly and usage. In particular, it can be composed
  * with any other transformations (Transform,Translation,RotationBase,Matrix)
  * and can be directly used to transform implicit homogeneous vectors. All these
  * operations are handled via the operator*. For the composition of transformations,
  * its principle consists to first convert the right/left hand sides of the product
  * to a compatible (Dim+1)^2 matrix and then perform a pure matrix product.
  * Of course, internally, operator* tries to perform the minimal number of operations
  * according to the nature of each terms. Likewise, when applying the transform
  * to non homogeneous vectors, the latters are automatically promoted to homogeneous
  * one before doing the matrix product. The convertions to homogeneous representations
  * are performed as follow:
  *
  * \b Translation t (Dim)x(1):
  * \f$ \left( \begin{array}{cc}
  * I & t \\
  * 0\,...\,0 & 1
  * \end{array} \right) \f$
  *
  * \b Rotation R (Dim)x(Dim):
  * \f$ \left( \begin{array}{cc}
  * R & 0\\
  * 0\,...\,0 & 1
  * \end{array} \right) \f$
  *
  * \b Linear \b Matrix L (Dim)x(Dim):
  * \f$ \left( \begin{array}{cc}
  * L & 0\\
  * 0\,...\,0 & 1
  * \end{array} \right) \f$
  *
  * \b Affine \b Matrix A (Dim)x(Dim+1):
  * \f$ \left( \begin{array}{c}
  * A\\
  * 0\,...\,0\,1
  * \end{array} \right) \f$
  *
  * \b Column \b vector v (Dim)x(1):
  * \f$ \left( \begin{array}{c}
  * v\\
  * 1
  * \end{array} \right) \f$
  *
  * \b Set \b of \b column \b vectors V1...Vn (Dim)x(n):
  * \f$ \left( \begin{array}{ccc}
  * v_1 & ... & v_n\\
  * 1 & ... & 1
  * \end{array} \right) \f$
  *
  * The concatenation of a Transform object with any kind of other transformation
  * always returns a Transform object.
  *
  * A little exception to the "as pure matrix product" rule is the case of the
  * transformation of non homogeneous vectors by an affine transformation. In
  * that case the last matrix row can be ignored, and the product returns non
  * homogeneous vectors.
  *
  * Since, for instance, a Dim x Dim matrix is interpreted as a linear transformation,
  * it is not possible to directly transform Dim vectors stored in a Dim x Dim matrix.
  * The solution is either to use a Dim x Dynamic matrix or explicitly request a
  * vector transformation by making the vector homogeneous:
  * \code
  * m' = T * m.colwise().homogeneous();
  * \endcode
  * Note that there is zero overhead.
  *
  * Conversion methods from/to Qt's QMatrix and QTransform are available if the
  * preprocessor token EIGEN_QT_SUPPORT is defined.
  *
  * \sa class Matrix, class Quaternion
  */
template<typename _Scalar, int _Dim, int _Mode>
00177 class Transform
{
public:
00180   EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1))
  enum {
    Mode = _Mode,
    Dim = _Dim,     ///< space dimension in which the transformation holds
    HDim = _Dim+1,  ///< size of a respective homogeneous vector
    Rows = int(Mode)==(AffineCompact) ? Dim : HDim
00186   };
  /** the scalar type of the coefficients */
  typedef _Scalar Scalar;
  typedef DenseIndex Index;
  /** type of the matrix used to represent the transformation */
00191   typedef Matrix<Scalar,Rows,HDim> MatrixType;
  /** type of the matrix used to represent the linear part of the transformation */
00193   typedef Matrix<Scalar,Dim,Dim> LinearMatrixType;
  /** type of read/write reference to the linear part of the transformation */
00195   typedef Block<MatrixType,Dim,Dim> LinearPart;
  /** type of read/write reference to the affine part of the transformation */
  typedef typename ei_meta_if<int(Mode)==int(AffineCompact),
                              MatrixType&,
00199                               Block<MatrixType,Dim,HDim> >::ret AffinePart;
  /** type of read/write reference to the affine part of the transformation */
  typedef typename ei_meta_if<int(Mode)==int(AffineCompact),
                              MatrixType&,
00203                               Block<MatrixType,Dim,HDim> >::ret AffinePartNested;
  /** type of a vector */
00205   typedef Matrix<Scalar,Dim,1> VectorType;
  /** type of a read/write reference to the translation part of the rotation */
00207   typedef Block<MatrixType,Dim,1> TranslationPart;
  /** corresponding translation type */
00209   typedef Translation<Scalar,Dim> TranslationType;

protected:

  MatrixType m_matrix;

public:

  /** Default constructor without initialization of the meaningful coefficients.
    * If Mode==Affine, then the last row is set to [0 ... 0 1] */
00219   inline Transform()
  {
    if (int(Mode)==Affine)
      makeAffine();
  }

  inline Transform(const Transform& other)
  {
    m_matrix = other.m_matrix;
  }

  inline explicit Transform(const TranslationType& t) { *this = t; }
  inline explicit Transform(const UniformScaling<Scalar>& s) { *this = s; }
  template<typename Derived>
  inline explicit Transform(const RotationBase<Derived, Dim>& r) { *this = r; }

  inline Transform& operator=(const Transform& other)
  { m_matrix = other.m_matrix; return *this; }

  typedef ei_transform_take_affine_part<Transform> take_affine_part;

  /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */
  template<typename OtherDerived>
00242   inline explicit Transform(const EigenBase<OtherDerived>& other)
  {
    ei_transform_construct_from_matrix<OtherDerived,Mode,Dim,HDim>::run(this, other.derived());
  }

  /** Set \c *this from a Dim^2 or (Dim+1)^2 matrix. */
  template<typename OtherDerived>
00249   inline Transform& operator=(const EigenBase<OtherDerived>& other)
  {
    ei_transform_construct_from_matrix<OtherDerived,Mode,Dim,HDim>::run(this, other.derived());
    return *this;
  }

  template<int OtherMode>
  inline Transform(const Transform<Scalar,Dim,OtherMode>& other)
  {
    // prevent conversions as:
    // Affine | AffineCompact | Isometry = Projective
    EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Projective), Mode==int(Projective)),
                        YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION)

    // prevent conversions as:
    // Isometry = Affine | AffineCompact
    EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Affine)||OtherMode==int(AffineCompact), Mode!=int(Isometry)),
                        YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION)

    enum { ModeIsAffineCompact = Mode == int(AffineCompact),
           OtherModeIsAffineCompact = OtherMode == int(AffineCompact)
    };

    if(ModeIsAffineCompact == OtherModeIsAffineCompact)
    {
      // We need the block expression because the code is compiled for all
      // combinations of transformations and will trigger a compile time error
      // if one tries to assign the matrices directly
      m_matrix.template block<Dim,Dim+1>(0,0) = other.matrix().template block<Dim,Dim+1>(0,0);
      makeAffine();
    }
    else if(OtherModeIsAffineCompact)
    {
      typedef typename Transform<Scalar,Dim,OtherMode>::MatrixType OtherMatrixType;
      ei_transform_construct_from_matrix<OtherMatrixType,Mode,Dim,HDim>::run(this, other.matrix());
    }
    else
    {
      // here we know that Mode == AffineCompact and OtherMode != AffineCompact.
      // if OtherMode were Projective, the static assert above would already have caught it.
      // So the only possibility is that OtherMode == Affine
      linear() = other.linear();
      translation() = other.translation();
    }
  }

  template<typename OtherDerived>
  Transform(const ReturnByValue<OtherDerived>& other)
  {
    other.evalTo(*this);
  }

  template<typename OtherDerived>
  Transform& operator=(const ReturnByValue<OtherDerived>& other)
  {
    other.evalTo(*this);
    return *this;
  }

  #ifdef EIGEN_QT_SUPPORT
  inline Transform(const QMatrix& other);
  inline Transform& operator=(const QMatrix& other);
  inline QMatrix toQMatrix(void) const;
  inline Transform(const QTransform& other);
  inline Transform& operator=(const QTransform& other);
  inline QTransform toQTransform(void) const;
  #endif

  /** shortcut for m_matrix(row,col);
    * \sa MatrixBase::operator(Index,Index) const */
00319   inline Scalar operator() (Index row, Index col) const { return m_matrix(row,col); }
  /** shortcut for m_matrix(row,col);
    * \sa MatrixBase::operator(Index,Index) */
00322   inline Scalar& operator() (Index row, Index col) { return m_matrix(row,col); }

  /** \returns a read-only expression of the transformation matrix */
00325   inline const MatrixType& matrix() const { return m_matrix; }
  /** \returns a writable expression of the transformation matrix */
00327   inline MatrixType& matrix() { return m_matrix; }

  /** \returns a read-only expression of the linear part of the transformation */
00330   inline const LinearPart linear() const { return m_matrix.template block<Dim,Dim>(0,0); }
  /** \returns a writable expression of the linear part of the transformation */
00332   inline LinearPart linear() { return m_matrix.template block<Dim,Dim>(0,0); }

  /** \returns a read-only expression of the Dim x HDim affine part of the transformation */
00335   inline const AffinePart affine() const { return take_affine_part::run(m_matrix); }
  /** \returns a writable expression of the Dim x HDim affine part of the transformation */
00337   inline AffinePart affine() { return take_affine_part::run(m_matrix); }

  /** \returns a read-only expression of the translation vector of the transformation */
00340   inline const TranslationPart translation() const { return m_matrix.template block<Dim,1>(0,Dim); }
  /** \returns a writable expression of the translation vector of the transformation */
00342   inline TranslationPart translation() { return m_matrix.template block<Dim,1>(0,Dim); }

  /** \returns an expression of the product between the transform \c *this and a matrix expression \a other
    *
    * The right hand side \a other might be either:
    * \li a vector of size Dim,
    * \li an homogeneous vector of size Dim+1,
    * \li a set of vectors of size Dim x Dynamic,
    * \li a set of homogeneous vectors of size Dim+1 x Dynamic,
    * \li a linear transformation matrix of size Dim x Dim,
    * \li an affine transformation matrix of size Dim x Dim+1,
    * \li a transformation matrix of size Dim+1 x Dim+1.
    */
  // note: this function is defined here because some compilers cannot find the respective declaration
  template<typename OtherDerived>
  EIGEN_STRONG_INLINE const typename ei_transform_right_product_impl<Transform, OtherDerived>::ResultType
00358   operator * (const EigenBase<OtherDerived> &other) const
  { return ei_transform_right_product_impl<Transform, OtherDerived>::run(*this,other.derived()); }

  /** \returns the product expression of a transformation matrix \a a times a transform \a b
    *
    * The left hand side \a other might be either:
    * \li a linear transformation matrix of size Dim x Dim,
    * \li an affine transformation matrix of size Dim x Dim+1,
    * \li a general transformation matrix of size Dim+1 x Dim+1.
    */
  template<typename OtherDerived> friend
  inline const typename ei_transform_left_product_impl<OtherDerived,Mode,_Dim,_Dim+1>::ResultType
00370     operator * (const EigenBase<OtherDerived> &a, const Transform &b)
  { return ei_transform_left_product_impl<OtherDerived,Mode,Dim,HDim>::run(a.derived(),b); }

  /** \returns The product expression of a transform \a a times a diagonal matrix \a b
    *
    * The rhs diagonal matrix is interpreted as an affine scaling transformation. The
    * product results in a Transform of the same type (mode) as the lhs only if the lhs 
    * mode is no isometry. In that case, the returned transform is an affinity.
    */
  friend inline const Transform<Scalar,Dim,((Mode==(int)Isometry)?Affine:(int)Mode)>
00380     operator * (const Transform &a, const DiagonalMatrix<Scalar,Dim> &b)
  {
    Transform<Scalar,Dim,((Mode==(int)Isometry)?Affine:(int)Mode)> res(a);
    res.linear() *= b;
    return res;
  }

  /** \returns The product expression of a diagonal matrix \a a times a transform \a b
    *
    * The lhs diagonal matrix is interpreted as an affine scaling transformation. The
    * product results in a Transform of the same type (mode) as the lhs only if the lhs 
    * mode is no isometry. In that case, the returned transform is an affinity.
    */
  friend inline const Transform<Scalar,Dim,((Mode==(int)Isometry)?Affine:(int)Mode)>
00394     operator * (const DiagonalMatrix<Scalar,Dim> &a, const Transform &b)
  {
    Transform<Scalar,Dim,((Mode==(int)Isometry)?Affine:(int)Mode)> res;
    res.linear().noalias() = a*b.linear();
    res.translation().noalias() = a*b.translation();
    if (Mode!=int(AffineCompact))
      res.matrix().row(Dim) = b.matrix().row(Dim);
    return res;
  }

  template<typename OtherDerived>
  inline Transform& operator*=(const EigenBase<OtherDerived>& other) { return *this = *this * other; }

  /** Concatenates two transformations */
00408   inline const Transform operator * (const Transform& other) const
  {
    return ei_transform_transform_product_impl<Transform,Transform>::run(*this,other);
  }

  /** Concatenates two different transformations */
  template<int OtherMode>
  inline const typename ei_transform_transform_product_impl<
    Transform,Transform<Scalar,Dim,OtherMode> >::ResultType
00417     operator * (const Transform<Scalar,Dim,OtherMode>& other) const
  {
    return ei_transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode> >::run(*this,other);
  }

  /** \sa MatrixBase::setIdentity() */
00423   void setIdentity() { m_matrix.setIdentity(); }

  /**
   * \brief Returns an identity transformation.
   * \todo In the future this function should be returning a Transform expression.
   */
00429   static const Transform Identity()
  {
    return Transform(MatrixType::Identity());
  }

  template<typename OtherDerived>
  inline Transform& scale(const MatrixBase<OtherDerived> &other);

  template<typename OtherDerived>
  inline Transform& prescale(const MatrixBase<OtherDerived> &other);

  inline Transform& scale(Scalar s);
  inline Transform& prescale(Scalar s);

  template<typename OtherDerived>
  inline Transform& translate(const MatrixBase<OtherDerived> &other);

  template<typename OtherDerived>
  inline Transform& pretranslate(const MatrixBase<OtherDerived> &other);

  template<typename RotationType>
  inline Transform& rotate(const RotationType& rotation);

  template<typename RotationType>
  inline Transform& prerotate(const RotationType& rotation);

  Transform& shear(Scalar sx, Scalar sy);
  Transform& preshear(Scalar sx, Scalar sy);

  inline Transform& operator=(const TranslationType& t);
  inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); }
  inline Transform operator*(const TranslationType& t) const;

  inline Transform& operator=(const UniformScaling<Scalar>& t);
  inline Transform& operator*=(const UniformScaling<Scalar>& s) { return scale(s.factor()); }
  inline Transform operator*(const UniformScaling<Scalar>& s) const;

  inline Transform& operator*=(const DiagonalMatrix<Scalar,Dim>& s) { linear() *= s; return *this; }

  template<typename Derived>
  inline Transform& operator=(const RotationBase<Derived,Dim>& r);
  template<typename Derived>
  inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); }
  template<typename Derived>
  inline Transform operator*(const RotationBase<Derived,Dim>& r) const;

  LinearMatrixType rotation() const;
  template<typename RotationMatrixType, typename ScalingMatrixType>
  void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const;
  template<typename ScalingMatrixType, typename RotationMatrixType>
  void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const;

  template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
  Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
    const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale);

  inline Transform inverse(TransformTraits traits = (TransformTraits)Mode) const;

  /** \returns a const pointer to the column major internal matrix */
00488   const Scalar* data() const { return m_matrix.data(); }
  /** \returns a non-const pointer to the column major internal matrix */
00490   Scalar* data() { return m_matrix.data(); }

  /** \returns \c *this with scalar type casted to \a NewScalarType
    *
    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
    * then this function smartly returns a const reference to \c *this.
    */
  template<typename NewScalarType>
00498   inline typename ei_cast_return_type<Transform,Transform<NewScalarType,Dim,Mode> >::type cast() const
  { return typename ei_cast_return_type<Transform,Transform<NewScalarType,Dim,Mode> >::type(*this); }

  /** Copy constructor with scalar type conversion */
  template<typename OtherScalarType>
00503   inline explicit Transform(const Transform<OtherScalarType,Dim,Mode>& other)
  { m_matrix = other.matrix().template cast<Scalar>(); }

  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
    * determined by \a prec.
    *
    * \sa MatrixBase::isApprox() */
00510   bool isApprox(const Transform& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const
  { return m_matrix.isApprox(other.m_matrix, prec); }

  /** Sets the last row to [0 ... 0 1]
    */
00515   void makeAffine()
  {
    if(int(Mode)!=int(AffineCompact))
    {
      matrix().template block<1,Dim>(Dim,0).setZero();
      matrix().coeffRef(Dim,Dim) = 1;
    }
  }

  /** \internal
    * \returns the Dim x Dim linear part if the transformation is affine,
    *          and the HDim x Dim part for projective transformations.
    */
00528   inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt()
  { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); }
  /** \internal
    * \returns the Dim x Dim linear part if the transformation is affine,
    *          and the HDim x Dim part for projective transformations.
    */
00534   inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt() const
  { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); }

  /** \internal
    * \returns the translation part if the transformation is affine,
    *          and the last column for projective transformations.
    */
00541   inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt()
  { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); }
  /** \internal
    * \returns the translation part if the transformation is affine,
    *          and the last column for projective transformations.
    */
00547   inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt() const
  { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); }


  #ifdef EIGEN_TRANSFORM_PLUGIN
  #include EIGEN_TRANSFORM_PLUGIN
  #endif

};

/** \ingroup Geometry_Module */
00558 typedef Transform<float,2,Isometry> Isometry2f;
/** \ingroup Geometry_Module */
00560 typedef Transform<float,3,Isometry> Isometry3f;
/** \ingroup Geometry_Module */
00562 typedef Transform<double,2,Isometry> Isometry2d;
/** \ingroup Geometry_Module */
00564 typedef Transform<double,3,Isometry> Isometry3d;

/** \ingroup Geometry_Module */
00567 typedef Transform<float,2,Affine> Affine2f;
/** \ingroup Geometry_Module */
00569 typedef Transform<float,3,Affine> Affine3f;
/** \ingroup Geometry_Module */
00571 typedef Transform<double,2,Affine> Affine2d;
/** \ingroup Geometry_Module */
00573 typedef Transform<double,3,Affine> Affine3d;

/** \ingroup Geometry_Module */
00576 typedef Transform<float,2,AffineCompact> AffineCompact2f;
/** \ingroup Geometry_Module */
00578 typedef Transform<float,3,AffineCompact> AffineCompact3f;
/** \ingroup Geometry_Module */
00580 typedef Transform<double,2,AffineCompact> AffineCompact2d;
/** \ingroup Geometry_Module */
00582 typedef Transform<double,3,AffineCompact> AffineCompact3d;

/** \ingroup Geometry_Module */
00585 typedef Transform<float,2,Projective> Projective2f;
/** \ingroup Geometry_Module */
00587 typedef Transform<float,3,Projective> Projective3f;
/** \ingroup Geometry_Module */
00589 typedef Transform<double,2,Projective> Projective2d;
/** \ingroup Geometry_Module */
00591 typedef Transform<double,3,Projective> Projective3d;

/**************************
*** Optional QT support ***
**************************/

#ifdef EIGEN_QT_SUPPORT
/** Initializes \c *this from a QMatrix assuming the dimension is 2.
  *
  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
  */
template<typename Scalar, int Dim, int Mode>
Transform<Scalar,Dim,Mode>::Transform(const QMatrix& other)
{
  *this = other;
}

/** Set \c *this from a QMatrix assuming the dimension is 2.
  *
  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
  */
template<typename Scalar, int Dim, int Mode>
Transform<Scalar,Dim,Mode>& Transform<Scalar,Dim,Mode>::operator=(const QMatrix& other)
{
  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
  m_matrix << other.m11(), other.m21(), other.dx(),
              other.m12(), other.m22(), other.dy(),
              0, 0, 1;
  return *this;
}

/** \returns a QMatrix from \c *this assuming the dimension is 2.
  *
  * \warning this conversion might loss data if \c *this is not affine
  *
  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
  */
template<typename Scalar, int Dim, int Mode>
QMatrix Transform<Scalar,Dim,Mode>::toQMatrix(void) const
{
  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
  return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
                 m_matrix.coeff(0,1), m_matrix.coeff(1,1),
                 m_matrix.coeff(0,2), m_matrix.coeff(1,2));
}

/** Initializes \c *this from a QTransform assuming the dimension is 2.
  *
  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
  */
template<typename Scalar, int Dim, int Mode>
Transform<Scalar,Dim,Mode>::Transform(const QTransform& other)
{
  *this = other;
}

/** Set \c *this from a QTransform assuming the dimension is 2.
  *
  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
  */
template<typename Scalar, int Dim, int Mode>
Transform<Scalar,Dim,Mode>& Transform<Scalar,Dim,Mode>::operator=(const QTransform& other)
{
  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
  m_matrix << other.m11(), other.m21(), other.dx(),
              other.m12(), other.m22(), other.dy(),
              other.m13(), other.m23(), other.m33();
  return *this;
}

/** \returns a QTransform from \c *this assuming the dimension is 2.
  *
  * This function is available only if the token EIGEN_QT_SUPPORT is defined.
  */
template<typename Scalar, int Dim, int Mode>
QTransform Transform<Scalar,Dim,Mode>::toQTransform(void) const
{
  EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
  return QTransform(matrix.coeff(0,0), matrix.coeff(1,0), matrix.coeff(2,0)
                    matrix.coeff(0,1), matrix.coeff(1,1), matrix.coeff(2,1)
                    matrix.coeff(0,2), matrix.coeff(1,2), matrix.coeff(2,2));
}
#endif

/*********************
*** Procedural API ***
*********************/

/** Applies on the right the non uniform scale transformation represented
  * by the vector \a other to \c *this and returns a reference to \c *this.
  * \sa prescale()
  */
template<typename Scalar, int Dim, int Mode>
template<typename OtherDerived>
Transform<Scalar,Dim,Mode>&
00686 Transform<Scalar,Dim,Mode>::scale(const MatrixBase<OtherDerived> &other)
{
  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
  linearExt().noalias() = (linearExt() * other.asDiagonal());
  return *this;
}

/** Applies on the right a uniform scale of a factor \a c to \c *this
  * and returns a reference to \c *this.
  * \sa prescale(Scalar)
  */
template<typename Scalar, int Dim, int Mode>
00699 inline Transform<Scalar,Dim,Mode>& Transform<Scalar,Dim,Mode>::scale(Scalar s)
{
  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
  linearExt() *= s;
  return *this;
}

/** Applies on the left the non uniform scale transformation represented
  * by the vector \a other to \c *this and returns a reference to \c *this.
  * \sa scale()
  */
template<typename Scalar, int Dim, int Mode>
template<typename OtherDerived>
Transform<Scalar,Dim,Mode>&
00713 Transform<Scalar,Dim,Mode>::prescale(const MatrixBase<OtherDerived> &other)
{
  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
  m_matrix.template block<Dim,HDim>(0,0).noalias() = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0));
  return *this;
}

/** Applies on the left a uniform scale of a factor \a c to \c *this
  * and returns a reference to \c *this.
  * \sa scale(Scalar)
  */
template<typename Scalar, int Dim, int Mode>
00726 inline Transform<Scalar,Dim,Mode>& Transform<Scalar,Dim,Mode>::prescale(Scalar s)
{
  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
  m_matrix.template topRows<Dim>() *= s;
  return *this;
}

/** Applies on the right the translation matrix represented by the vector \a other
  * to \c *this and returns a reference to \c *this.
  * \sa pretranslate()
  */
template<typename Scalar, int Dim, int Mode>
template<typename OtherDerived>
Transform<Scalar,Dim,Mode>&
00740 Transform<Scalar,Dim,Mode>::translate(const MatrixBase<OtherDerived> &other)
{
  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
  translationExt() += linearExt() * other;
  return *this;
}

/** Applies on the left the translation matrix represented by the vector \a other
  * to \c *this and returns a reference to \c *this.
  * \sa translate()
  */
template<typename Scalar, int Dim, int Mode>
template<typename OtherDerived>
Transform<Scalar,Dim,Mode>&
00754 Transform<Scalar,Dim,Mode>::pretranslate(const MatrixBase<OtherDerived> &other)
{
  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
  if(int(Mode)==int(Projective))
    affine() += other * m_matrix.row(Dim);
  else
    translation() += other;
  return *this;
}

/** Applies on the right the rotation represented by the rotation \a rotation
  * to \c *this and returns a reference to \c *this.
  *
  * The template parameter \a RotationType is the type of the rotation which
  * must be known by ei_toRotationMatrix<>.
  *
  * Natively supported types includes:
  *   - any scalar (2D),
  *   - a Dim x Dim matrix expression,
  *   - a Quaternion (3D),
  *   - a AngleAxis (3D)
  *
  * This mechanism is easily extendable to support user types such as Euler angles,
  * or a pair of Quaternion for 4D rotations.
  *
  * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType)
  */
template<typename Scalar, int Dim, int Mode>
template<typename RotationType>
Transform<Scalar,Dim,Mode>&
00784 Transform<Scalar,Dim,Mode>::rotate(const RotationType& rotation)
{
  linearExt() *= ei_toRotationMatrix<Scalar,Dim>(rotation);
  return *this;
}

/** Applies on the left the rotation represented by the rotation \a rotation
  * to \c *this and returns a reference to \c *this.
  *
  * See rotate() for further details.
  *
  * \sa rotate()
  */
template<typename Scalar, int Dim, int Mode>
template<typename RotationType>
Transform<Scalar,Dim,Mode>&
00800 Transform<Scalar,Dim,Mode>::prerotate(const RotationType& rotation)
{
  m_matrix.template block<Dim,HDim>(0,0) = ei_toRotationMatrix<Scalar,Dim>(rotation)
                                         * m_matrix.template block<Dim,HDim>(0,0);
  return *this;
}

/** Applies on the right the shear transformation represented
  * by the vector \a other to \c *this and returns a reference to \c *this.
  * \warning 2D only.
  * \sa preshear()
  */
template<typename Scalar, int Dim, int Mode>
Transform<Scalar,Dim,Mode>&
00814 Transform<Scalar,Dim,Mode>::shear(Scalar sx, Scalar sy)
{
  EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
  VectorType tmp = linear().col(0)*sy + linear().col(1);
  linear() << linear().col(0) + linear().col(1)*sx, tmp;
  return *this;
}

/** Applies on the left the shear transformation represented
  * by the vector \a other to \c *this and returns a reference to \c *this.
  * \warning 2D only.
  * \sa shear()
  */
template<typename Scalar, int Dim, int Mode>
Transform<Scalar,Dim,Mode>&
00830 Transform<Scalar,Dim,Mode>::preshear(Scalar sx, Scalar sy)
{
  EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
  EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
  m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0);
  return *this;
}

/******************************************************
*** Scaling, Translation and Rotation compatibility ***
******************************************************/

template<typename Scalar, int Dim, int Mode>
inline Transform<Scalar,Dim,Mode>& Transform<Scalar,Dim,Mode>::operator=(const TranslationType& t)
{
  linear().setIdentity();
  translation() = t.vector();
  makeAffine();
  return *this;
}

template<typename Scalar, int Dim, int Mode>
inline Transform<Scalar,Dim,Mode> Transform<Scalar,Dim,Mode>::operator*(const TranslationType& t) const
{
  Transform res = *this;
  res.translate(t.vector());
  return res;
}

template<typename Scalar, int Dim, int Mode>
inline Transform<Scalar,Dim,Mode>& Transform<Scalar,Dim,Mode>::operator=(const UniformScaling<Scalar>& s)
{
  m_matrix.setZero();
  linear().diagonal().fill(s.factor());
  makeAffine();
  return *this;
}

template<typename Scalar, int Dim, int Mode>
inline Transform<Scalar,Dim,Mode> Transform<Scalar,Dim,Mode>::operator*(const UniformScaling<Scalar>& s) const
{
  Transform res = *this;
  res.scale(s.factor());
  return res;
}

template<typename Scalar, int Dim, int Mode>
template<typename Derived>
inline Transform<Scalar,Dim,Mode>& Transform<Scalar,Dim,Mode>::operator=(const RotationBase<Derived,Dim>& r)
{
  linear() = ei_toRotationMatrix<Scalar,Dim>(r);
  translation().setZero();
  makeAffine();
  return *this;
}

template<typename Scalar, int Dim, int Mode>
template<typename Derived>
inline Transform<Scalar,Dim,Mode> Transform<Scalar,Dim,Mode>::operator*(const RotationBase<Derived,Dim>& r) const
{
  Transform res = *this;
  res.rotate(r.derived());
  return res;
}

/************************
*** Special functions ***
************************/

/** \returns the rotation part of the transformation
  *
  *
  * \svd_module
  *
  * \sa computeRotationScaling(), computeScalingRotation(), class SVD
  */
template<typename Scalar, int Dim, int Mode>
typename Transform<Scalar,Dim,Mode>::LinearMatrixType
00908 Transform<Scalar,Dim,Mode>::rotation() const
{
  LinearMatrixType result;
  computeRotationScaling(&result, (LinearMatrixType*)0);
  return result;
}


/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
  * not necessarily positive.
  *
  * If either pointer is zero, the corresponding computation is skipped.
  *
  *
  *
  * \svd_module
  *
  * \sa computeScalingRotation(), rotation(), class SVD
  */
template<typename Scalar, int Dim, int Mode>
template<typename RotationMatrixType, typename ScalingMatrixType>
00929 void Transform<Scalar,Dim,Mode>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const
{
  linear().svd().computeRotationScaling(rotation, scaling);
}

/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
  * not necessarily positive.
  *
  * If either pointer is zero, the corresponding computation is skipped.
  *
  *
  *
  * \svd_module
  *
  * \sa computeRotationScaling(), rotation(), class SVD
  */
template<typename Scalar, int Dim, int Mode>
template<typename ScalingMatrixType, typename RotationMatrixType>
00947 void Transform<Scalar,Dim,Mode>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const
{
  linear().svd().computeScalingRotation(scaling, rotation);
}

/** Convenient method to set \c *this from a position, orientation and scale
  * of a 3D object.
  */
template<typename Scalar, int Dim, int Mode>
template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
Transform<Scalar,Dim,Mode>&
00958 Transform<Scalar,Dim,Mode>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
  const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale)
{
  linear() = ei_toRotationMatrix<Scalar,Dim>(orientation);
  linear() *= scale.asDiagonal();
  translation() = position;
  makeAffine();
  return *this;
}

// selector needed to avoid taking the inverse of a 3x4 matrix
template<typename TransformType, int Mode=TransformType::Mode>
00970 struct ei_projective_transform_inverse
{
  static inline void run(const TransformType&, TransformType&)
  {}
};

template<typename TransformType>
00977 struct ei_projective_transform_inverse<TransformType, Projective>
{
  static inline void run(const TransformType& m, TransformType& res)
  {
    res.matrix() = m.matrix().inverse();
  }
};


/**
  *
  * \returns the inverse transformation according to some given knowledge
  * on \c *this.
  *
  * \param hint allows to optimize the inversion process when the transformation
  * is known to be not a general transformation. The possible values are:
  *  - Projective if the transformation is not necessarily affine, i.e., if the
  *    last row is not guaranteed to be [0 ... 0 1]
  *  - Affine is the default, the last row is assumed to be [0 ... 0 1]
  *  - Isometry if the transformation is only a concatenations of translations
  *    and rotations.
  *
  * \warning unless \a traits is always set to NoShear or NoScaling, this function
  * requires the generic inverse method of MatrixBase defined in the LU module. If
  * you forget to include this module, then you will get hard to debug linking errors.
  *
  * \sa MatrixBase::inverse()
  */
template<typename Scalar, int Dim, int Mode>
Transform<Scalar,Dim,Mode>
01007 Transform<Scalar,Dim,Mode>::inverse(TransformTraits hint) const
{
  Transform res;
  if (hint == Projective)
  {
    ei_projective_transform_inverse<Transform>::run(*this, res);
  }
  else
  {
    if (hint == Isometry)
    {
      res.matrix().template topLeftCorner<Dim,Dim>() = linear().transpose();
    }
    else if(hint&Affine)
    {
      res.matrix().template topLeftCorner<Dim,Dim>() = linear().inverse();
    }
    else
    {
      ei_assert(false && "Invalid transform traits in Transform::Inverse");
    }
    // translation and remaining parts
    res.matrix().template topRightCorner<Dim,1>()
      = - res.matrix().template topLeftCorner<Dim,Dim>() * translation();
    res.makeAffine(); // we do need this, because in the beginning res is uninitialized
  }
  return res;
}

/*****************************************************
*** Specializations of take affine part            ***
*****************************************************/

01040 template<typename TransformType> struct ei_transform_take_affine_part {
  typedef typename TransformType::MatrixType MatrixType;
  typedef typename TransformType::AffinePart AffinePart;
  static inline AffinePart run(MatrixType& m)
  { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); }
  static inline const AffinePart run(const MatrixType& m)
  { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); }
};

template<typename Scalar, int Dim>
01050 struct ei_transform_take_affine_part<Transform<Scalar,Dim,AffineCompact> > {
  typedef typename Transform<Scalar,Dim,AffineCompact>::MatrixType MatrixType;
  static inline MatrixType& run(MatrixType& m) { return m; }
  static inline const MatrixType& run(const MatrixType& m) { return m; }
};

/*****************************************************
*** Specializations of construct from matrix       ***
*****************************************************/

template<typename Other, int Mode, int Dim, int HDim>
01061 struct ei_transform_construct_from_matrix<Other, Mode,Dim,HDim, Dim,Dim>
{
  static inline void run(Transform<typename Other::Scalar,Dim,Mode> *transform, const Other& other)
  {
    transform->linear() = other;
    transform->translation().setZero();
    transform->makeAffine();
  }
};

template<typename Other, int Mode, int Dim, int HDim>
01072 struct ei_transform_construct_from_matrix<Other, Mode,Dim,HDim, Dim,HDim>
{
  static inline void run(Transform<typename Other::Scalar,Dim,Mode> *transform, const Other& other)
  {
    transform->affine() = other;
    transform->makeAffine();
  }
};

template<typename Other, int Mode, int Dim, int HDim>
01082 struct ei_transform_construct_from_matrix<Other, Mode,Dim,HDim, HDim,HDim>
{
  static inline void run(Transform<typename Other::Scalar,Dim,Mode> *transform, const Other& other)
  { transform->matrix() = other; }
};

template<typename Other, int Dim, int HDim>
01089 struct ei_transform_construct_from_matrix<Other, AffineCompact,Dim,HDim, HDim,HDim>
{
  static inline void run(Transform<typename Other::Scalar,Dim,AffineCompact> *transform, const Other& other)
  { transform->matrix() = other.template block<Dim,HDim>(0,0); }
};

/**********************************************************
***   Specializations of operator* with rhs EigenBase   ***
**********************************************************/

template<int LhsMode,int RhsMode>
01100 struct ei_transform_product_result
{
  enum 
  { 
    Mode =
      (LhsMode == (int)Projective    || RhsMode == (int)Projective    ) ? Projective :
      (LhsMode == (int)Affine        || RhsMode == (int)Affine        ) ? Affine :
      (LhsMode == (int)AffineCompact || RhsMode == (int)AffineCompact ) ? AffineCompact :
      (LhsMode == (int)Isometry      || RhsMode == (int)Isometry      ) ? Isometry : Projective
  };
};

template< typename TransformType, typename MatrixType >
01113 struct ei_transform_right_product_impl< TransformType, MatrixType, true >
{
  typedef typename MatrixType::PlainObject ResultType;

  EIGEN_STRONG_INLINE static ResultType run(const TransformType& T, const MatrixType& other)
  {
    return T.matrix() * other;
  }
};

template< typename TransformType, typename MatrixType >
01124 struct ei_transform_right_product_impl< TransformType, MatrixType, false >
{
  enum { 
    Dim = TransformType::Dim, 
    HDim = TransformType::HDim,
    OtherRows = MatrixType::RowsAtCompileTime,
    OtherCols = MatrixType::ColsAtCompileTime
  };

  typedef typename MatrixType::PlainObject ResultType;

  EIGEN_STRONG_INLINE static ResultType run(const TransformType& T, const MatrixType& other)
  {
    EIGEN_STATIC_ASSERT(OtherRows==Dim || OtherRows==HDim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES);

    typedef Block<ResultType, Dim, OtherCols> TopLeftLhs;
    typedef Block<MatrixType, Dim, OtherCols> TopLeftRhs;

    ResultType res(other.rows(),other.cols());

    TopLeftLhs(res, 0, 0, Dim, other.cols()) =
      ( T.linear() * TopLeftRhs(other, 0, 0, Dim, other.cols()) ).colwise() +
        T.translation();

    // we need to take .rows() because OtherRows might be Dim or HDim
    if (OtherRows==HDim)
      res.row(other.rows()) = other.row(other.rows());

    return res;
  }
};

/**********************************************************
***   Specializations of operator* with lhs EigenBase   ***
**********************************************************/

// generic HDim x HDim matrix * T => Projective
template<typename Other,int Mode, int Dim, int HDim>
01162 struct ei_transform_left_product_impl<Other,Mode,Dim,HDim, HDim,HDim>
{
  typedef Transform<typename Other::Scalar,Dim,Mode> TransformType;
  typedef typename TransformType::MatrixType MatrixType;
  typedef Transform<typename Other::Scalar,Dim,Projective> ResultType;
  static ResultType run(const Other& other,const TransformType& tr)
  { return ResultType(other * tr.matrix()); }
};

// generic HDim x HDim matrix * AffineCompact => Projective
template<typename Other, int Dim, int HDim>
01173 struct ei_transform_left_product_impl<Other,AffineCompact,Dim,HDim, HDim,HDim>
{
  typedef Transform<typename Other::Scalar,Dim,AffineCompact> TransformType;
  typedef typename TransformType::MatrixType MatrixType;
  typedef Transform<typename Other::Scalar,Dim,Projective> ResultType;
  static ResultType run(const Other& other,const TransformType& tr)
  {
    ResultType res;
    res.matrix().noalias() = other.template block<HDim,Dim>(0,0) * tr.matrix();
    res.matrix().col(Dim) += other.col(Dim);
    return res;
  }
};

// affine matrix * T
template<typename Other,int Mode, int Dim, int HDim>
01189 struct ei_transform_left_product_impl<Other,Mode,Dim,HDim, Dim,HDim>
{
  typedef Transform<typename Other::Scalar,Dim,Mode> TransformType;
  typedef typename TransformType::MatrixType MatrixType;
  typedef TransformType ResultType;
  static ResultType run(const Other& other,const TransformType& tr)
  {
    ResultType res;
    res.affine().noalias() = other * tr.matrix();
    res.matrix().row(Dim) = tr.matrix().row(Dim);
    return res;
  }
};

// affine matrix * AffineCompact
template<typename Other, int Dim, int HDim>
01205 struct ei_transform_left_product_impl<Other,AffineCompact,Dim,HDim, Dim,HDim>
{
  typedef Transform<typename Other::Scalar,Dim,AffineCompact> TransformType;
  typedef typename TransformType::MatrixType MatrixType;
  typedef TransformType ResultType;
  static ResultType run(const Other& other,const TransformType& tr)
  {
    ResultType res;
    res.matrix().noalias() = other.template block<Dim,Dim>(0,0) * tr.matrix();
    res.translation() += other.col(Dim);
    return res;
  }
};

// linear matrix * T
template<typename Other,int Mode, int Dim, int HDim>
01221 struct ei_transform_left_product_impl<Other,Mode,Dim,HDim, Dim,Dim>
{
  typedef Transform<typename Other::Scalar,Dim,Mode> TransformType;
  typedef typename TransformType::MatrixType MatrixType;
  typedef TransformType ResultType;
  static ResultType run(const Other& other, const TransformType& tr)
  {
    TransformType res;
    if(Mode!=int(AffineCompact))
      res.matrix().row(Dim) = tr.matrix().row(Dim);
    res.matrix().template topRows<Dim>().noalias()
      = other * tr.matrix().template topRows<Dim>();
    return res;
  }
};

/**********************************************************
*** Specializations of operator* with another Transform ***
**********************************************************/

template<typename Scalar, int Dim, int LhsMode, int RhsMode>
01242 struct ei_transform_transform_product_impl<Transform<Scalar,Dim,LhsMode>,Transform<Scalar,Dim,RhsMode>,false >
{
  enum { ResultMode = ei_transform_product_result<LhsMode,RhsMode>::Mode };
  typedef Transform<Scalar,Dim,LhsMode> Lhs;
  typedef Transform<Scalar,Dim,RhsMode> Rhs;
  typedef Transform<Scalar,Dim,ResultMode> ResultType;
  static ResultType run(const Lhs& lhs, const Rhs& rhs)
  {
    ResultType res;
    res.linear() = lhs.linear() * rhs.linear();
    res.translation() = lhs.linear() * rhs.translation() + lhs.translation();
    res.makeAffine();
    return res;
  }
};

template<typename Scalar, int Dim, int LhsMode, int RhsMode>
01259 struct ei_transform_transform_product_impl<Transform<Scalar,Dim,LhsMode>,Transform<Scalar,Dim,RhsMode>,true >
{
  typedef Transform<Scalar,Dim,LhsMode> Lhs;
  typedef Transform<Scalar,Dim,RhsMode> Rhs;
  typedef Transform<Scalar,Dim,Projective> ResultType;
  static ResultType run(const Lhs& lhs, const Rhs& rhs)
  {
    return ResultType( lhs.matrix() * rhs.matrix() );
  }
};

#endif // EIGEN_TRANSFORM_H

Generated by  Doxygen 1.6.0   Back to index